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Factorial Designs Basic definitions and principles

Factorial Designs:Basic definitions and principles

Many experiments involve the study of the effects of two or more
factors.
Factorial designs are the most efficient for this type of experiment.
In each complete trial or replicate, all possible combinations of factor
levels are investigated.

Example: If there are a levels of factor A and b levels of factor B, each
replicate contains all ab treatment combinations.

Factors in factorial designs are often said to be crossed.
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Factorial Designs Advantage of Factorial Design

Main Effects in Factorial Designs

The effect of a factor is defined as the change in response produced
by a change in the level of the factor.
Called a main effect as it refers to the primary factors of interest.
Example: In a two-factor factorial experiment (Figure 5.1):

Both factors have two levels (low and high, denoted as − and +,
respectively).
Main effect of factor A: The difference between the average response
at the low level of A and the high level of A.
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Factorial Designs The two factor factorial design

The two factor factorial design

let yijk be the observed response when factor A is at the ith level
(i = 1, 2, . . . , a) and factor B is at the jth level (j = 1, 2, . . . , b) for the kth
replicate (k = 1, 2, . . . , n).

Observations in a factorial experiment can be described by a model.
There are several ways to write the model for a factorial experiment.
Effects Model:

yijk = µ+ αi + βj + (αβ)ij + εijk


i = 1, 2, . . . , a
j = 1, 2, . . . , b
k = 1, 2, . . . , n

where:
µ: Overall mean effect.
αi : Effect of the ith level of the row factor A.
βj : Effect of the jth level of the column factor B.
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Factorial Designs The two factor factorial design

Factorial Experiment Model: Details

In the effects model:
(αβ)ij : Interaction effect between αi and βj .
εijk : Random error component.

Assumptions:

a∑
i=1

αi = 0,
b∑

j=1
βj = 0,

a∑
i=1

b∑
j=1

(αβ)ij = 0.

Both factors are assumed to be fixed.
With n replicates, there are abn total observations.
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Factorial Designs The two factor factorial design

Alternative Models for Factorial Experiments

Another possible model is the means model,

yijk = µij + εijk


i = 1, 2, . . . , a
j = 1, 2, . . . , b
k = 1, 2, . . . , n

where the mean of the ijth cell is:

µij = µ+ αi + βj + (αβ)ij .

A regression model can also be used, especially when one or more
factors are quantitative.
Throughout most of this chapter, we use the effects model
(Equation 5.1) with an illustration of the regression model in Section
5.5.
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Factorial Designs The two factor factorial design

Hypotheses in a Two-Factor Factorial

In a two-factor factorial, both row and column factors (A and B) are
of equal interest.
Hypotheses to test:

Equality of row treatment effects:

H0 : α1 = α2 = · · · = αa = 0,
H1 : At least one αi 6= 0.

Equality of column treatment effects:

H0 : β1 = β2 = · · · = βb = 0,
H1 : At least one βj 6= 0.

Interaction between row and column treatments:

H0 : (αβ)ij = 0 for all i , j ,
H1 : At least one (αβ)ij 6= 0.
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Factorial Designs The two factor factorial design

Statistical Analysis of the Fixed Effects Model

Let yi .. denote the total of all observations under the ith level of
factor A.
Let y.j. denote the total of all observations under the jth level of
factor B.
Let yij. denote the total of all observations in the ijth cell.
Hypotheses are tested using a two-factor analysis of variance.
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Factorial Designs The two factor factorial design

Summation Notation for Factorial Experiments

yi .. =
b∑

j=1

n∑
k=1

yijk ȳi .. = yi ..
bn , i = 1, 2, . . . , a

y.j. =
a∑

i=1

n∑
k=1

yijk ȳ.j. = y.j.
an , j = 1, 2, . . . , b

yij. =
n∑

k=1
yijk ȳij. = yij.

n , i = 1, 2, . . . , a, j = 1, 2, . . . , b

y... =
a∑

i=1

b∑
j=1

n∑
k=1

yijk ȳ... = y...

abn
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Factorial Designs The two factor factorial design

ANOVA Equation for Two-Factor Factorial

The total corrected sum of squares is expressed as:

a∑
i=1

b∑
j=1

n∑
k=1

(yijk − ȳ...)2

This can be partitioned as:

SST = SSA + SSB + SSAB + SSE ,

where:
SSA: Sum of squares for factor A (rows).
SSB : Sum of squares for factor B (columns).
SSAB : Sum of squares for interaction.
SSE : Sum of squares for error.
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Factorial Designs The two factor factorial design

Degrees of Freedom for ANOVA

The number of degrees of freedom (DF) for each component:
Effect Degrees of Freedom (DF)
Factor A (SSA) a − 1
Factor B (SSB) b − 1
Interaction (SSAB) (a − 1)(b − 1)
Error (SSE ) ab(n − 1)
Total (SST ) abn − 1

Justification for the degrees of freedom:
Total DF: abn − 1.
Main effects DF: a − 1 for A and b − 1 for B.
Interaction DF: ab − 1− (a − 1)− (b − 1).
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Example
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Interaction Effect: Material and Temperature
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Example: Battery Life
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Factorial Designs The two factor factorial design

ANOVA Results Overview

The ANOVA is shown in Table 5.5.
Because F0.05,4,27 = 2.73, we conclude that there is a significant
interaction between material types and temperature.
Furthermore, F0.05,2,27 = 3.35, so the main effects of material type
and temperature are also significant.
Table 5.5 also shows the P-values for the test statistics.
To assist in interpreting the results of this experiment, it is helpful to
construct a graph of the average responses at each treatment
combination.
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Factorial Designs The two factor factorial design

Factorial Design Model Summary Using R

# Fit the factorial design model
> factorial_model <- aov(Life ~ Material * Temp, data = data.battery)
> # Display the model summary
> summary(factorial_model)
Df Sum Sq Mean Sq F value Pr(>F)
Material 2 10684 5342 7.911 0.00198 **
Temp 2 39119 19559 28.968 1.91e-07 ***
Material:Temp 4 9614 2403 3.560 0.01861 *
Residuals 27 18231 675
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Factorial Designs The two factor factorial design

Model Adequacy Checking

Before the conclusions from the ANOVA are adopted, the adequacy
of the underlying model should be checked.
As before, the primary diagnostic tool is residual analysis.
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Model Adequacy Checking
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Factorial Designs The two factor factorial design

Model Adequacy Checking

#1 Shapiro-Wilk test for normality of residuals

shapiro.test(residuals(factorial_model))

Shapiro-Wilk normality test

data: residuals(factorial_model)
W = 0.97606, p-value = 0.6117

the P-value greater than α = 0.05, then we conclude that the
Residuals is Normally Distributed.
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Factorial Designs The two factor factorial design

Model Adequacy Checking

2. Homogeneity Test

fligner.test(Life ~ interaction(Material , Temp), data = data.battery)

Fligner-Killeen test of homogeneity of
variances

data: Life by interaction(Material, Temp)
Fligner-Killeen:med chi-squared = 5.667, df
= 8, p-value = 0.6845
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Factorial Designs The two factor factorial design

Fligner-Killeen Test Interpretation

Test Description:
Life interaction(Material, Temp)

Assesses whether the variances of the response variable (Life) are
equal across the groups formed by the interaction of Material and
Temp.

Output Summary:
Test Statistic: Fligner-Killeen:med chi-squared = 5.667
Degrees of Freedom: df = 8
p-value: 0.6845
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Factorial Designs The two factor factorial design

Fligner-Killeen Test Interpretation

Conclusion:
Null Hypothesis (H0): Variances across groups are equal.
Since p-value (0.6845) > α = 0.05, we fail to reject the null
hypothesis.
There is no evidence to suggest significant differences in variances
across the groups.

Practical Implications:
Homogeneity of variances is satisfied.
Suitable to proceed with ANOVA.
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Factorial Designs The two factor factorial design

Model Adequacy Checking

# Levene’s Test for homogeneity of variances
> leveneTest(Life ~ Material * Temp, data = data.battery)
Levene’s Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)
group 8 0.7996 0.6081
27
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Factorial Designs The two factor factorial design

Model Adequacy Checking

Interaction plots for visualization

interaction.plot(data.battery$Temp, data.battery$Material,
data.battery$Life,
col = c("red", "blue", "green"), lwd = 2,
ylab = "Mean Response", xlab = "Temperature",
trace.label = "Material")
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Factorial Designs The two factor factorial design

Example: Battery Life

Ahmed A.(Msc) (DDU) Department of Statistics December 10, 2024 34 / 42



Factorial Designs The two factor factorial design

The Assumption of No Interaction in a Two-Factor
Model

Overview:
Occasionally, an experimenter assumes a two-factor model without
interaction is appropriate:

yijk = µ+ αi + βj + εijk


i = 1, 2, . . . , a
j = 1, 2, . . . , b
k = 1, 2, . . . , n

This simplifies the model and the analysis.
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The Assumption of No Interaction in a Two-Factor
Model

Key Considerations:
Be cautious when excluding interaction terms.
Significant interaction can dramatically affect data interpretation.

Analysis Without Interaction:
Straightforward statistical analysis is possible.
Example: Table 5.8 presents the analysis of the battery life data
(Example 5.1) under the assumption of no interaction.
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General Factorial Design

Extends the two-factor factorial design to a general case with:
a levels of factor A
b levels of factor B
c levels of factor C , and so on.

Total observations: abc . . . n, where n is the number of replicates.
At least two replicates (n ≥ 2) are required to calculate the sum of
squares due to error.
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Factorial Designs General Factorial Design

Fixed Effects Model

Hypotheses for main effects and interactions can be tested using
ANOVA.
For a fixed effects model:

Test statistics are computed by dividing the mean square for the effect
or interaction by the mean square error.
All F-tests are upper-tail, one-tailed tests.

Degrees of freedom:
Main effect: levels of factor− 1.
Interaction: Product of the degrees of freedom for individual
components.
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Factorial Designs The three factor factorial design

Three-Factor Analysis of Variance Model

Assuming A, B, and C are fixed factors:
Analysis of variance table is constructed.
F-tests for main effects and interactions are based on expected mean
squares.

Manual formulas for sums of squares are occasionally useful.
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Factorial Designs The three factor factorial design

Total Sum of Squares

SST =
a∑

i=1

b∑
j=1

c∑
k=1

n∑
l=1

y2
ijkl −

y2
...

abcn (1)
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Factorial Designs The three factor factorial design

Main Effects Sums of Squares

SSA = 1
bcn

a∑
i=1

y2
i ... −

y2
...

abcn (2)

SSB = 1
acn

b∑
j=1

y2
·j... −

y2
...

abcn (3)

SSC = 1
abn

c∑
k=1

y2
··k... −

y2
...

abcn (4)
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Factorial Designs The three factor factorial design

Conclusion

ANOVA computations are often done using statistical software.
Manual computations of sums of squares can aid in understanding.
The general factorial design provides a framework for analyzing
complex experiments with multiple factors and levels.
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